

FAIL-SAFE MICROPROCESSOR INTERLOCKING
- AN APPLICATION OF NUMERICALLY INTEGRATED SAFETY ASSURANCE LOGIC -

David B. Rutherford, Jr.

General Railway Signal Co.; U.S.A.

Summary

A new generation of vital wayside interlocking logic is being
implemented electronically with fail-safe microprocessor-based
systems. The General Railway Signal Vital Processor Interlocking
(VPI) system is based on the principles of Safety Assurance Logic ,
a philosophy developed in 1975 and applied to several commercially
available products in which vital processes are microprocessor-
controlled. The fail-safety of the VPI system is based on an extension
of these principles. The VPI system is essentially a vital Boolean
logic processor, enabling the functional logic of the interlocking to
be expressed as a closed set of primordially safe Boolean
expressions. The expression set may be constructed as a direct
representation of conventional relay logic, using existing
nomenclature and design principles. Numerically Integrated Safety
Assurance Logic allows for the fail-safe evaluation of the set of
Boolean expressions designed to represent the logical requirements
of an individual interlocking in a "single processor" environment The
classical techniques of cycle-checking and diversity are used in this
single processor system to ensure fail-safe operation.

Basic VPI System Configuration

The VPI system replaces conventional fail-safe relay interlocking
logic, situated at the wayside, with a microprocessor-based system
using vital solid-state input and output circuits to interface with the
wayside appliances: switch machines, signal heads, track circuit
inputs, and line circuits. It may receive commands via a non-vital
communication system from the central office and deliver
indications of system status and interlocking operation over the
same non- vital link, or it may receive operational commands locally
(Figure 1).

The core of the VPI system is a vital Boolean logic processor.
Since the logical functions inherent in a railroad interlocking can be
reduced to a closed set of Boolean expressions, a general purpose
Boolean processor that evaluates those expressions vitally is an

efficient vehicle for interlocking control. It also offers the advantage
of being able to implement the interlocking logic using expressions
that are a direct representation of existing relay logic designs,
designs that have become standards for individual railroads by
proving themselves safe and reliable over the past 50 years.

The states of inputs from the field (switch position, track
occupancy, signal status, and line circuit inputs) are vitally sensed
via solid-state input circuits.

Vital solid-state output circuits are used to position switches, set
signal aspects and energize relays and line circuits in accordance
with the interlocking logic rules. The solid-state output circuits are
designed to provide vital assurance that any system failure that
attempts to issue an improper permissive output will be immediately
detected, and power to the driven output device will be disabled
before its effect is felt by any wayside appliance.

The states of the vital outputs are determined by evaluating the
set of Boolean expressions describing proper interlocking operation.
The expression set should not only provide for efficient operation of
the interlocking, but must be "primordially safe." The term
"primordially safe" means that if the Boolean expression set is
evaluated correctly and without failure, safe operation of the
interlocking will result. The expression set is designed by the signal
engineer or application engineer to satisfy the individual railroad's
safety standards and operating procedures.

The VPI system can generate any number of vital time delays.
The time delays are implemented by a set of expressions with special
properties; however, their evaluation follows as a natural extension
of the way in which all other logical expressions are evaluated. These
time delays are identical to those performed by conventional motor-
driven timers or vital solid-state timers. The time delays may be either
switch-settable or permanently programmed or both. The range of
each vital time delay is from zero to 59 minutes, 59 seconds in one

second increments.

The VPI system also can emulate any non-vital code system.
Centralized traffic control commands sent via the code lines are
inserted directly into the system as expression parameters.
Indication messages, which can represent the states of any vital
input, output or expression parameter, are internally constructed and
then delivered to the non-vital code system in the appropriate code
format.

Non-vital parallel inputs can be accepted as expression
parameter values (from local emergency control panels, for
example). Likewise, non-vital parallel outputs may be used to
illuminate local emergency control panel lamps, maintenance
procedure indications, etc.

Vital emergency-working functions can be designed directly into
the interlocking logic expression set to enable maintenance
personnel to block switches, lock routes, etc., via specified vital local
inputs.

VITAL PARALLEL COMMUNICATION
WITH ADDITIONAL LOCAL
VTI UNITS

VITAL SERIAL COMMUNICATION
WITH REMOTE
VTI UNITS

Figure 1. VPI system configuration.

Communication between several remote VPI systems distributed

throughout one large interlocking or situated within several
interlockings is possible via vital serial communication links. This
feature allows large interlocking plants to be divided into sections so
that the VPI system controlling the section is in proximity to its
wayside hardware. Vital data are passed between VPI systems over a
standard data link, such as a simple twisted-pair (Figure 2).

The VPI system is modular. It is expanded by adding functions to
the expression set and inserting additional vital input and output
groups.

Principles of Operation

The microprocessor-based vital Boolean logic processor core is a
single-processor system that processes vital data in two diverse,
independent channels. The two diverse independent channels are
software channels, each of which contains data representing the state
of each parameter, but encoded in diverse forms. These two forms of
data representation must correspond exactly for permissive outputs
to be allowed. A single-processor system does not need more than
one processor for safety assurance. Although there are a number of
separate processors in the VPI system, they are required to divide the
work load rather than provide safety checks on each other. System
safety is ultimately assured by a directly acceptable device.

The VPI System Cycle
Figures 3 and 4 illustrate the vital processes occurring during the

system cycle. One VPI system cycle consists of sensing and encoding
vital and non-vital input parameters, determining the states of the vital
outputs by evaluating the entire Boolean expression set using the
current values of the input parameters, and driving the vital output
ports to their proper states. The system cycle is exactly one second.
During the cycle, the states of the vital output ports are checked every
50 milliseconds (ms).

Determining the Vital Input States
The state of each vital input (TRUE or FALSE) is determined at the

beginning of each system cycle. Each input state is represented as a
parameter value in each of the two independent channels. These
parameters constitute "vital data" within the system. Vital data are data
representing vital parameters that have been encoded to include
unique parameter identification within a separate polynomial code
assigned to each channel. Unique codewords are assigned to the
TRUE and FALSE states of each input parameter for each channel.

Vital communication between local and remote VPI
systems.

Figure 4. VPI vital processes.

INTERLOCKING 2

INPUT TESTWORD
CIRCULATION

Figure 2.

Figure 3. VPI vital processes.

The states of the vital inputs are then sensed by circulating a
testword through each vital input circuit for each of the two diverse
independent channels. The testword has properties peculiar to the
TRUE codeword associated with the input parameter. The vital input
circuit is designed so that the testword cannot be circulated through
the circuit unless the input is energized. The testword is circulated
serially through the input port circuit represented by that parameter.

If the input is energized, the testword is transformed and returned
as the TRUE codeword. It is stored in an identity-sensitive location in
system data memory and represents the state of the input parameter
as TRUE. An identical operation on a diverse testword is performed for
the second channel. In the event that the circulated testword has
corrupted or was unable to be circulated because the input was not
active, the assigned FALSE codeword value is inserted in the memory
location.

Thus, the TRUE state representation of each input parameter is
protected in three ways. First the codewords themselves are encoded
with unique identification. Second, each value is stored in an "identity-
sensitive" location in system memory, and third, different
representations of the same parameter exist in each of two independent
channels. Note that TRUE parameter codeword values appear nowhere
in permanent machine-readable memory, but must be built by the input
process during each system cycle.

Note that non-vital input parameter values are also determined at
this point in the system cycle; however, they are encoded by direct
assignment of the appropriate TRUE or FALSE values, not by testword
circulation through a vital input circuit.

Expression Evaluation
After all parameter states have been encoded into the two

channels, the expression set is evaluated using the encoded data. The
Boolean expression set that describes the logical operation of the
interlocking contains expressions of the form:

X = (A*B*C) + (D*/E*F*G) +

Where "X" is the result, (A*B*C) is the first product term, consisting
of parameters A, B, &. C, and (D,/E*F,G) is the second product term,
consisting of parameters D, E, F, 4 G. Expressions written using this
format are said to be in "sum of products" form. The first product term
is said to be TRUE if all of its parameters A, B, 4 C exist in their TRUE
states (here the "*" symbol indicates "logical and"). The second
product term is said to be TRUE if parameters D, F, 4 G exist in their
TRUE states and parameter E exists in its FALSE state. Here the "/"
symbol denotes the false state of the parameter which follows (E in this
case). The expression result "X" is said to be TRUE if any of the product
terms is TRUE. (Here the "+" symbol indicates "logical or".) In the event
that no product term is TRUE, the expression result is FALSE.

Expressions are evaluated using a mathematical process that
operates on the encoded values of the parameters within a selected
product term, and each product term is evaluated sequentially until a
TRUE term is found. The result is the unique TRUE codeword
representing this expression result if, and only if, the parameter values
used are the correct parameter representations indicating the correct
parameter states, and are operated on in the correct order. The correct
TRUE codeword value is not known to the system; however, the FALSE
value is readily accessible.

Again, each expression is evaluated in each of the two channels
using that channel's parameter values, and the results in each channel
are codewords in that channel's unique polynomial code. If the
expression is determined to be false by a cursory look at the parameter
states within each product term, the FALSE codeword value is
assigned to the expression result.

There is no practical limit to the number of product terms contained
in an expression or to the number of parameters contained in any
product term. The parameters in an expression may represent the
states of any of the following:

- vital inputs
- non-vital inputs
- results of previous expressions

(evaluated during the current system cycle)
- results of subsequent expressions

(evaluated during the previous system cycle)
- the result of the current expression

(evaluated during the previous system cycle)

Note that the use of expression results evaluated on the previous

system cycle allows the expressions to emulate "self-latching" relay
configurations.

The entire expression set exists in each of the two diverse
independent channels. Parameter values used in evaluating channel 1
expressions are members of the channel 1 codeword set and are
located in identity-sensitive locations in channel 1 data memory, and
likewise for channel 2.

Driving the Vital Output States
After the expression set has been completely evaluated in both

channels, those expression results that directly determine the states of
the system's vital outputs are examined, and the output circuits are
driven to the corresponding states.

After the vital output states have been established, the system
constructs the non-vital indication messages that are then transmitted
serially on the code system communication lines in the proper code
format or transmitted in parallel on non-vital output ports.

The VPI system cycle is now complete. The duration of the cycle is
one second. However a "vital recheck" cycle occurs every 50ms during
the one second VPI system cycle as explained below.

The Assurance of Safety

Safety Assurance Logic
Safety Assurance logic is a set of design principles used in the

design of fail-safe processor products or systems using a single
processor with two logic systems incorporated into the program. The
primary logic performs the necessary task (executes interlocking logic,
for example) and the Safety Assurance Logic proves that the primary
task is performed correctly, or does not allow an output to be delivered.
The most simple processor-based system comprises a central logic
unit and the necessary devices to send inputs to it and deliver outputs
from it. The vital processor-based system has, in addition, Safety
Assurance Logic and design attention directed to the safety
implications of its connections to other safety systems or appliances.

The primary logic is designed to be safe, but it, in itself, cannot be
used as a fail-safe system. Safety Assurance Logic must be added to
verify that:

- the inputs to the processor are correct
- the program is executed correctly

- the program has not changed
- data tables have not changed
- inputs and variable data are current

- the outputs are correct
- the outputs have not been changed by device failures

The Safety Assurance Logic verifies the performance of the
primary logic by making prescribed tests. These tests are designed to
reveal any failures that could result in an incorrect output. Checkwords
are generated, with each word conveying vital certification of one
feature of vital performance. Checkwords do not exist in permanent
processor memory; therefore, a complete complement of checkwords
is assurance that all vital tests were made and passed. All tests must
be repeated on every processor cycle and new checkwords must be
generated.

The "watchdog" of the system is the "vital driver." This is a
processor-based device that assimilates the complement of
checkwords each cycle, and generates a dynamic signal of an exact
form and frequency. The dynamic signal is then passed through a vital
analog frequency decoder that assures that its form and frequency
content are correct and generates a DC voltage, which in turn picks a
vital relay. Closure of the vital relay's front contacts provides the only
source of power to the vital system outputs. Thus fail-safety is
ultimately assured by a directly acceptable device whose nature is
completely different from the processor-based system it is designed to
protect.

A full complement of checkwords enables the vital driver logic to
produce its dynamic output for only a vitally-limited time. The
production of the dynamic output not only verifies that every
checkword is correct, but also that the checkwords are vitally
destroyed as a necessary condition for the dynamic output to exist.

In the case of the VPI system, a full complement of checkwords is
delivered every 50ms. The checkword set enables the vital driver to
produce only 50ms of dynamic output. Unless constantly refreshed

with new checkword data each 50ms, the dynamic signal ceases and
the vital relay opens its front contacts, removing power from the vital
outputs.

Numerically Integrated Safety Assurance Logic

Systems, such as VPI, differ from small single-purpose, processor-
based products in that the process of accommodating the unique
variations associated with each application is more involved. Normally,
the instructions and data in the permanent processor memory of a
single-purpose device are not changed from application to application.
With VPI, however, each application requires its own unique set of
expressions and parameters, which leads to a unique data pattern in
the associated microprocessor memory.

The implied need to redesign the Safety Assurance Logic for each
new application has been eliminated by the development of a variation
of the Safety Assurance Logic concept in which the vital checkword
structure is woven throughout the data. Instead of checkwords being
built in parallel with the processing of the data to prove that the
processing has occurred, the checkword information is built into the
data structure. The bits in each checkword are made to depend upon
every parameter and process upon which the permissive output
depends. Any checkword built from incorrect data or incorrect
processing will be affected.

This variation allows all of the program instructions (routines) to
be designed as universally applicable to all interlockings. The
application-dependent information is contained in a data base. In this
way, all of the program may be written at the outset and thoroughly
debugged. Once this is done, it is only necessary to create a new data
base for each new application. The Safety Assurance Logic, which
assures that the system performs correctly or not at all, is imbedded in
the unique data base. This variation is known as "Numerically
Integrated Safety Assurance Logic."

The Vital Output Recheck Cycle

An important application of Numerically Integrated Safety
Assurance Logic in the VPI system is the assurance that vital outputs
are in their non-permissive states unless specifically allowed to be
permissive by TRUE expression result values in both channels. This is
accomplished by executing a "vital recheck" program every 50ms. The
recheck program circulates unique testwords through the vital
"absence-of-current detector" (a.o.c.d.) circuit associated with each
output. This vital circuit allows a testword to be circulated only if the
current flowing to the output is zero (below a vitally established
threshold that is sufficiently low so that the driven appliance will not
interpret it as permissive). If testwords that have been transformed into
TRUE codewords are returned through the a.o.c.d., they are proof that
the ouptut is in its non-permissive state. If TRUE codewords are not
returned intact, the output is assumed to be in its permissive state.

A complete set of checkwords validating the states of all system
vital outputs is thus generated. If the set is correct, it provides vital
assurance that only those outputs which correspond to expressions
evaluated as TRUE are in their permissive states. A correct set of
checkwords permits the vital driver to generate 50ms of vital dynamic
output.

Another important application of Numerically Integrated Safety
Assurance Logic in the VPI system is the vital erasure of variable data
buffers each system cycle (one second). On completion of each system
cycle, the data buffers that contain input parameters and expression
results are vitally erased. This is necessary to assure the use of current
data every cycle. In the case of expression results used as "self-
latching" parameters, vital erasure assures that these results have
been evaluated on the previous cycle. The vital erasure process
produces a checkword set that is delivered to the vital driver at the
beginning of each one-second system cycle. This checkword set must
be correct to enable the vital driver to produce its dynamic output for
each of the recheck cycles in the subsequent system cycle.

Applying VPI to an Individual Interlocking

Application of the VPI system begins with the definition of the
input and output interfaces (vital and non-vital). Vital inputs are of one
type only, while there are a variety of vital output types. They include
single- and double-break, low- current outputs and high-current,
single-break outputs for driving signal aspects. Vital inputs and
outputs are available in modular groups and are inserted into the
system as needed. Non-vital I/O definition includes the type of serial
code system to be emulated, as well as parallel configurations.

The application engineer then produces a "primordially safe" set
of Boolean expressions which logically describes the proper operation
of the interlocking. These expressions may describe the interlocking
operation in a manner identical to that currently used in designing vital
wayside relay logic - using the same nomenclature, the same functional
logic principles, and the same logical configuration.

A "computer-aided assembly” (CAA) package has been designed
to assist the application engineer in configuring the system. It includes
a "logic simulation" facility that enables the Boolean expression set to
be exercised, simulating functional interlocking operation. Syntax-
checking features in the CAA crosscheck parameter and I/O names for
consistency and report discrepancies. An easy-to-use editor is avail-
able for syntax correction and expression changes. The CAA
documents the physical configuration of the VPI system modules and
produces wiring lists to facilitate wiring to external interlocking circuits
and appliances.

Safety Considerations within the CAA
The most important responsibility of the CAA program is the

construction of the vital data base from the final primordially-safe
Boolean expression set. Encoded testword values (which are to be
transformed into TRUE codeword parameter values by circulation
through vital input and output circuits residing in their appropriate
states in actual operation), directly readable FALSE parameter
codeword values, identity-sensitive memory location assignments, and
expression product term data definitions must be assembled into
PROM-based code in each of the two diverse independent channels in
exactly the correct form. To insure the integrity of the vital data base, a
CAA CHECK program is run off-line.

The output of the CAA CHECK program is two expression sets
reconstructed using only the PROM-based data and the assigned
parameter nomenclature list, one expression set from each of the two
channels. These reconstructed expression sets may be then checked
against the original to assure the engineer that the VPI system's
interpretation of the expression set is correct. The primordial safety of
the original expression set is checked in much the same way as relay
logic circuits.

The integrity of the vital data base is protected against hardware
failure once the system is in operation by the coded nature of the data
themselves, in accordance with the principles of Numerically
Integrated Safety Assurance Logic. Once the vital data base is
originally verified as correct, any value change in either the data base
or the vital routines themselves is immediately revealed during
operation as an aberration in the checkword values, and power to the
system's outputs is terminated as described above.

The "vital routine software" resident in the VPI system remains
unchanged from application to application.

The VPI system has been designed to enable operation in a fully
redundant mode. This optional mode allows two identical VPI systems
to be connected in parallel. In the absence of any failure, both systems
are fully operational However, only one system is driving the system
outputs. In the event of a failure in one system, the outputs are
automatically driven by the other system, which also reports the failure
to the central office via the code system.

In the redundant mode, no mechanical or electrical switching of
individual outputs is necessary under failure conditions. The vital
outputs of both systems are simply tied together. Vital isolation of the
output ports of each system prevent one system's failure from unsafely
affecting the other.

User-oriented maintenance tools enable maintenance personnel to
isolate failures in the VPI system quickly. Since only the main CPU
board contains application-unique hardware (in the form of the memory
data base), only a small number of universal spare board types is
required to put a failed system back in operation.

